思路:
- 生成一个
n×n
空矩阵mat
,随后模拟整个向内环绕的填入过程:- 定义当前左右上下边界
l,r,t,b
,初始值num = 1
,迭代终止值tar = n * n
; - 当
num <= tar
时,始终按照从左到右
从上到下
从右到左
从下到上
填入顺序循环,每次填入后:- 执行
num += 1
:得到下一个需要填入的数字; - 更新边界:例如从左到右填完后,上边界
t += 1
,相当于上边界向内缩 1。
- 执行
- 使用
num <= tar
而不是l < r || t < b
作为迭代条件,是为了解决当n
为奇数时,矩阵中心数字无法在迭代过程中被填充的问题。
- 定义当前左右上下边界
- 最终返回
mat
即可。
代码:
Java
class Solution {
public int[][] generateMatrix(int n) {
int l = 0, r = n - 1, t = 0, b = n - 1;
int[][] mat = new int[n][n];
int num = 1, tar = n * n;
while(num <= tar){
for(int i = l; i <= r; i++) mat[t][i] = num++; // left to right.
t++;
for(int i = t; i <= b; i++) mat[i][r] = num++; // top to bottom.
r--;
for(int i = r; i >= l; i--) mat[b][i] = num++; // right to left.
b--;
for(int i = b; i >= t; i--) mat[i][l] = num++; // bottom to top.
l++;
}
return mat;
}
}
Python
class Solution:
def generateMatrix(self, n: int) -> [[int]]:
l, r, t, b = 0, n - 1, 0, n - 1
mat = [[0 for _ in range(n)] for _ in range(n)]
num, tar = 1, n * n
while num <= tar:
for i in range(l, r + 1): # left to right
mat[t][i] = num
num += 1
t += 1
for i in range(t, b + 1): # top to bottom
mat[i][r] = num
num += 1
r -= 1
for i in range(r, l - 1, -1): # right to left
mat[b][i] = num
num += 1
b -= 1
for i in range(b, t - 1, -1): # bottom to top
mat[i][l] = num
num += 1
l += 1
return mat